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Abstract 
This paper posits product market competition as a potential driver of stock returns and quantifies 
its impact on stock price informativeness. 𝑅𝑅2 of stock return regressions increase on average by 
8.70 percentage points after accounting for the firm’s strategic interactions with its nearest 
product market neighbors. We find that stock prices reflecting product market competition 
enhance learning, as managers incorporate these signals into their investment decisions. The 
contribution of the product market competition channel to managerial learning is particularly 
strong and remains robust to endogeneity concerns for R&D investments. It is also more 
pronounced in subsamples where focal firms are less financially constrained, are industry 
leaders, operate in R&D-intensive markets, and interact with rivals in high-quality information or 
highly competitive environments. Additional analyses of innovation outcomes, including patents 
and changes in the firm’s product offerings, confirm the robustness of the R&D results. These 
findings reveal how product market-driven improvements in stock price informativeness shape 
corporate decision-making. 
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1. Introduction 

Understanding the informational content of stock prices is crucial not only for asset pricing but 

also due to its significant implications for corporate finance. Stock prices indeed have real effects 

and serve as a key source of information for managers.1 Depending on the sampling choice and 

data frequency, at most twenty percent of daily stock price changes is explained by the classical 

market model augmented with a broad industry factor (Roll, 1988). While more sophisticated 

asset pricing models improve the explanatory power by a few percentage points, they still leave a 

large portion of daily stock price changes unexplained. This unexplained component, 1 − 𝑅𝑅2, 

which is also known as price nonsynchronicity, is widely used as a proxy for the quantity of firm-

specific information embedded in stock prices (Durnev, Morck, Yeung and Zarowin, 2003). It is 

also well-established that managers learn from this idiosyncratic component, but the specific 

nature of the information driving this learning effect remains largely unexplored in existing 

literature.2 

This paper examines product market competition as a potential driver of managerial learning from 

the firm’s own stock prices, referred hereafter to as the product market competition (PMC) 

channel. Firms do not operate in isolation; they actively engage with competitors in the product 

market, influencing both their own outcomes and those of their rivals. These interactions affect 

investment decisions and cash flows (Frésard and Valta, 2016), while peer valuations shape 

investment behavior (Foucault and Frésard, 2014; Eaton, Guo, Liu, and Officer, 2022). 

Additionally, industries are a key area for news dissemination in stock markets (Hou, 2007), where 

firm-specific news can affect the value of other firms in the same industry due to their 

interconnectedness. Consequently, after quantifying the extent to which product market 

 
1 See Bond, Edmans, and Goldstein (2012) or Goldstein (2023) for a review of the theoretical and empirical 
literature devoted to the financial markets’ real effect. 
2 Prior literature provides ample empirical evidence about managerial learning from stock prices in 
various settings like investment, merger and acquisition, cash holdings, and firm productivity (see, e.g., 
Chen, Goldstein, and Jiang, 2007; Luo, 2005; Kau, Linck, and Rubin, 2008; Edmans, Goldstein, and Jiang, 
2012; Frésard, 2012; Foucault and Frésard, 2012; Edmans, Jayaraman, and Schneemeier, 2017; Bennett, 
Stulz, and Wang, 2020; Chen and Doukas, 2024). 
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competition drive the focal firm’s stock price, we assess whether managerial learning is enhanced 

when stock prices better reflect the informational content of PMC.  

We acknowledge that firms may directly learn from the behaviors and actions of their industry 

rivals (see, e.g., Spence, 1981; Gilbert and Lieberman, 1987; Grenadier, 2002; Leary and Roberts, 

2014; Décaire, Gilje, and Taillard, 2020; Bustamente and Frésard, 2021; Krieger, 2021), as well 

from their stock prices (Foucault and Frésard, 2014; Yan, 2024). Observing a rival’s investment or 

innovation provides valuable insights, and changes in a rival's stock price can signal information 

about future growth opportunities in the industry. However, an equally crucial factor is the 

information content of PMC—understanding how rival actions affect the information content of 

the focal firm’s stock price. We posit that a firm’s own stock price becomes more informative 

thanks to product market-driven interactions, improving the firm’s learning process.  

Our empirical approach proceeds in two stages. The first stage quantifies the contribution of rival 

firms’ strategic actions to the stock price changes of the focal firm. This requires addressing two 

empirical challenges: (i) identifying rival firms operating within the same product market space; 

and (ii) constructing a proxy to measure the information content of strategic interactions with 

these rivals.  

The Hoberg and Phillips (2010, 2016) database addresses the first challenge.3 By analyzing 

product descriptions from SEC 10-K filings, the authors calculate yearly similarity scores between 

firm pairs across the entire Compustat universe. These similarity scores measure proximity in the 

product market space and correlate with the degree of direct rivalry between firms. To identify a 

firm’s closest rivals in any given year, we follow the approach of Hoberg and Phillips (2010) and 

select the ten nearest neighbors (10NN) in the product market space. 

To overcome the second empirical challenge, we start with a simple observation: firm-specific 

news about industry rivals affects the stock prices of firms in the same product market through 

 
3 http://hobergphillips.tuck.dartmouth.edu/industryclass.htm. 

http://hobergphillips.tuck.dartmouth.edu/industryclass.htm
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the competition (or cooperation) channel. For example, on July 6, 2021, the Pentagon canceled 

Microsoft’s $10 billion JEDI cloud contract, resulting in Amazon stock rising by 4.69%. This 

Microsoft-specific news benefited Amazon, as its Amazon Web Services platform competes with 

Microsoft Azure for the Pentagon contract. However, not all rival interactions are as obvious. When 

Apple announced its shift to in-house silicon in June 2020, the stock price of its former supplier, 

Intel, saw little change, likely because the move was anticipated by analysts. In such cases, 

identifying stock price impacts requires pinpointing the exact days when rumors or leaks hit the 

market. While feasible for a small sample of industries, large-scale collection over extended 

periods of such data is certainly challenging. Nonetheless, if good news for some firms is bad 

news for others in the same product market (or good news for both in cases of cooperation), firm-

specific return correlations should reveal this dynamic. To account for rival firms’ strategic 

interactions in explaining stock price changes, we therefore incorporate the idiosyncratic returns 

of the 10NN rivals into the baseline stock return regressions of the focal firm.4 

We assemble our sample by merging the Hoberg and Phillips database with the CRSP universe 

over the 1989–2021 period. After excluding utility and financial industries, the data requirements 

result in a sample averaging 2,870 firms per year. We isolate the contribution of rivals’ product 

market interactions to the information content of stock prices by starting with a baseline model. 

This model regresses the daily excess returns of the focal firm on the excess returns of the market 

portfolio and a value weighted industry portfolio. The industry portfolio is formed by firms within 

the same 3-digit SIC code, following standard practices in prior learning literature. The use of the 

broad industry factor allows us to control for shocks that are common to all industry firms 

(typically, shocks on product demand due to technological innovation or change in input prices). 

We then augment the baseline model with the daily idiosyncratic returns of the 10NN rivals. By 

 
4 See de Bodt, Eckbo, and Roll (2024) for the use of idiosyncratic within-industry return comovements to 
identify industry rival’s strategic reactions to competitive shock in the industry. 
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comparing the 𝑅𝑅2 of the full model with that of the baseline model, we isolate the contribution of 

the 10NN rivals’ strategic interactions to the stock price informativeness of the focal firm.  

Relying on a firm-by-firm yearly regressions over the 1989–2021 period, we document that the 

average 𝑅𝑅2 obtained with the baseline model is 16.96%, which is of the same magnitude as the 

average 𝑅𝑅2 reported in Chen, Goldstein, and Jiang (2007). The inclusion of the 10NN rivals 

idiosyncratic returns increases the average 𝑅𝑅2 by 8.70 percentage points, a highly statistically 

significant increase in 𝑅𝑅2. This result confirms that PMC is important in explaining the information 

content of stock returns.  

We use the difference between the 1 − 𝑅𝑅2 of the baseline model and that of the full model 

controlling for the 10NN rivals’ stock returns to measure the contribution of product market 

competition to the stock price informativeness of the focal firm.5, This variable aims to quantify 

the product market competition-induced component of the focal firm’s stock price 

informativeness, which we denote as SPIPMC.  

We next test our prediction. Relying on various investment variables, we examine whether learning 

from the firm’s own stock price is amplified when the contribution of product market competition 

to the firm’s stock price informativeness is higher (i.e., the PMC channel of managerial learning). 

We follow prior literature and adopt a standard linear investment equation which relates the focal 

firm’s investment ratio to its own stock price, thereby estimating investment-to-Q sensitivities. We 

start with the capex-to-assets ratio as dependent variable and confirm the well-established 

finding from prior literature that capex investment is highly sensitive to Tobin’s Q (Chen, Goldstein, 

and Jiang, 2007). The coefficient estimate of Tobin’s Q is positive and statistically significant at the 

1% level in our sample. Next, we augment the specification by including our variable of interest, 

SPIPMC, along with its interaction term with Tobin’s Q. The interaction term tests whether the 

 
5 Before calculating the difference between the two stock price informativeness variables, we apply a 
logistic transformation to both, as is common in prior literature to address the skewness and boundedness 
of 1 − 𝑅𝑅2 (Durnev, Morck, and Young, 2004). 
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sensitivity of the firm’s capex to its stock price increases when the contribution of the 10NN rival’s 

returns to the stock price informativeness is higher. This is the case, as the interaction term is 

associated with a statistically significant positive coefficient. The economic effect is sizeable, 

with a one standard deviation change in SPIPMC inducing a 6% increase in the sensitivity of the 

capex ratio to the firm’s Tobin’s Q relative to the baseline effect.   

We repeat our analysis by also controlling for the stock price of industry peers using the industry 

average Tobin’s Q, as firms may also learn directly from the valuation of their peers (Foucault and 

Frésard, 2014). The inclusion of the industry peers’ Tobin’s Q does not affect our main finding. The 

PMC channel of managerial learning that we document extends therefore beyond merely 

observing rivals’ stock prices. This further implies that understanding the informational content 

of PMC is important to identify sources of managerial learning. Note that the coefficient estimate 

of the industry peers’ Tobin’s Q loads also with a significantly positive coefficient estimate in the 

capex ratio regression, indicating that direct learning from rival stock prices is also at play in our 

sample.6  

Performing the same analysis with R&D and total investment ratios further emphasizes the 

importance of learning from the product market-driven component of the firm’s stock price 

informativeness.7 It is also important to emphasize that the economic magnitude of the 

documented PMC channel is notably stronger for R&D investments compared to capex. This 

aligns with the critical role of R&D in driving firm growth (Brown, Fazzari, and Petersen, 2009) and 

the challenges of financing R&D using external source of funding (Hall, 2002). These 

characteristics likely explain R&D's increased sensitivity to stock prices, particularly when those 

prices reflect substantial product market-driven information. Interestingly, direct learning from 

 
6 Relying on the average Tobin’s Q of a broad industry [i.e., TNIC industries developed by Hoberg and 
Phillips (2016)] or that of the 10NN rivals as an additional control does not alter our conclusion. 
7 We define total investment as the sum of capex, R&D and cash acquisition, less asset sales, scaled by 
lagged total assets. 
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peer valuations do not appear to play a significantly positive effect for both R&D and total 

investment. 

Numerous robustness checks confirm our result. Specifically, our main finding remains robust 

when: (i) we use the relative increase in the 𝑅𝑅2 between the baseline and full models as an 

alternative proxy for the product market-driven component of stock price informativeness; (ii) we 

replace the one-factor model with the Fama-French five-factor model (Fama and French, 2015); 

(iii) we adjust return regressions using asymmetric betas to account for differential responses to 

good and bad news affecting rivals (Ang, Chen, and Xing 2006); and (iv) we control for managerial 

private information using earnings surprises and analyst coverage, following Chen, Goldstein, and 

Jiang (2007). This additional test ensures that managers rely on stock prices to access information 

beyond their private knowledge. Finally, a placebo test, which consists in allocating randomly 10 

firms as nearest rivals to the focal firm, confirms that our learning result is not due to chance. 

To gain a better sense of the magnitude of the PMC-induced learning effects that we capture, we 

compare the contributions of the residual firm-specific information in stock returns (after 

controlling for co-movements with the returns of the 10NN rivals) to the PMC-driven stock price 

informativeness to managerial learning. This analysis should be informative about the relative 

economic importance of PMC-driven stock price informativeness. The results suggest that both 

components are important sources of information for managerial learning. While the coefficient 

estimate of Tobin’s Q in the capex regression is more sensitive to the residual component, for both 

R&D and total investment, the economic impact of the PMC-driven component is as important as 

that of the residual component.  

We next study cross-sectional determinants that influence the contribution of the PMC channel 

to managerial learning. To this end, we consider five contexts that may amplify or attenuate 

managerial learning: financial constraints, informational environment quality, competition 

intensity, R&D intensity, and industry leadership. Specifically, we find that PMC-induced learning 

effects are strongest for R&D investments, particularly among firms that are less financially 
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constrained, competing in high-quality informational environments, in leadership positions, and 

operating in R&D-intensive and competitive product markets. Collectively, these results highlight 

the importance of PMC-driven market signals for R&D investments, particularly in settings where 

strategic interactions are essential. 

Our finding that firms with higher PMC-driven SPI exhibit greater sensitivity to Tobin’s Q can be 

driven by factors that impact both price discovery and investment. For instance, as noted by 

Bennett, Stulz, and Wang (2020), one possible omitted factor is technological shocks, which 

could enhance price informativeness and influence investment decisions. To strengthen the 

causal interpretation of our results, we follow Bennett, Stulz, and Wang's (2020) approach, using 

a quasi-natural experiment to address potential endogeneity concerns. We specifically examine 

the addition of the focal firm’s 10NN rivals to the S&P 500 index as an exogenous shock to SPIPMC. 

The inclusion of a rival firm in the index is beyond the focal firm’s control. Furthermore, such 

inclusion is expected to increase the co-movement of the rival firm’s stock returns with the index 

(Vijh, 1994; Barberis, Shleifer, and Wurgler, 2005). As a result, this inclusion can reduce the co-

movement between the idiosyncratic stock returns of the rival firm and the focal firm. We begin 

by testing this conjecture, showing that S&P 500 additions negatively impact SPIPMC. In the 

investment regressions, we replace SPIPMC by a dummy variable identifying the addition of rival 

firms tothe S&P 500 index and find that such additions significantly reduce the sensitivity of the 

focal firm’s R&D expenses to its Tobin’s Q. This result supports the existence of a causal 

relationship between R&D expenses and SPIPMC. However, the effects on capex and total 

investment are not statistically significant. 

Taken collectively, our various identification strategies indicate that among the investment 

decisions, R&D investment appears to be the most sensitive to PMC-induced signals in stock 

prices. To further assess the robustness of our R&D results, we turn to variables capturing 

innovation outcomes over the next three years, since it may take time for R&D to translate into 

tangible innovation (Griliches, 1990). We replicate our baseline analysis with three different 
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innovation outcomes: (i) granted patents8, (ii) future citations of the granted patents, and (iii) 

changes in product offerings using the self-fluidity variable of Hoberg, Phillips, and Prabhala 

(2014). These additional results are in-line with the R&D results, showing that PMC-driven stock 

price informativeness amplifies the sensitivity of the considered innovation outcomes to the 

firm’s Tobin’s Q. 

Our research contributes to literature examining the feedback effect of financial markets, in 

general, and to literature on managerial learning from stock prices, in particular. As emphasized 

in Goldstein (2023), the discovery of information is one of the central roles of financial markets. 

Stock prices aggregate information from various sources, and information embedded in stock 

prices enhance the efficiency of the decision-making processes in the real economy (see, among 

others, Dow and Gorton, 1997; Subrahmanyam and Titman, 1999; Peress, 2014).  

Numerous articles provide empirical evidence emphasizing that managers learn from their own 

stock prices in the context of investment decisions. Chen, Goldstein, and Jiang (2007) show that 

firm-specific information in stock prices affects positively the sensitivity of corporate investments 

(such as capex and R&D) to stock prices. Frésard and Foucault (2012) document that cross-listing 

in a relatively more efficient market affects positively the sensitivity of corporate investment to 

stock prices. Edmans, Jayaraman, and Schneemeier (2017) develop a theoretical model 

predicting that managers do not only learn from the total information embedded in stock prices, 

but that the source of that information also matters. Reyling on an international setting and the 

adoption of insider trading laws, the authors document that the sensitivity of capex to stock prices 

is amplified when stock prices incorporate information unknown to managers. We also consider 

the information source and document that the component driven by PMC is important for 

managerial learning in the context of investment. Our paper shed therefore important light on the 

 
8 Patent data are from the KPSS patent data library (Kogan, Papanikolaou, Seru, and Stoffman, 2017), 
available at https://github.com/KPSS2017. 
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nature of information driving the learning effects and emphasize the role of product market 

competition. 

Our research also relates to studies examining learning from peers’ stock prices and valuations.9  

Foucault and Frésard (2014) develop a theoretical model to lay out their empirical predictions and 

provide evidence that the stock prices of industry peers matter for capex investments. Yan (2024) 

focuses on private firms, and document that their investments are sensitive to the stock prices of 

industry peer listed firms. While firms can derive insights from observing their rivals’ stock prices, 

this alone may not provide a complete picture. It's equally important to understand implications 

of rivals' actions on the focal firm’s stock price information content. To capture these PMC effects, 

we rely on idiosyncratic within-industry return comovement in stock return regressions. 

Accounting for PMC improves stock price informativeness, which, in turn, enhance managerial 

learning. Our specifications control for the Tobin’s Q of industry peers, and therefore, the learning 

effect that we document extends beyond merely observing rivals’ stock prices. 

2. Data and empirical approach 

This section begins by detailing the identification of product market rivals and describing the 

sample. Next, we outline the method used to isolate the PMC-driven component of stock price 

informativeness (SPI). We then present the results of stock return regressions, which we use to 

estimate SPI variables. Finally, we introduce the regression specification used to test whether 

PMC channel is an important source of information for managerial learning from stock prices, 

referred as the PMC channel. 

2.1. Rival identification and sample construction 

 
9 Stock prices of peers are also important in capital budgeting and M&A decisions, where corporate 
executives and investment bankers derive pricing multiples from listed comparable firms to value 
investment opportunities (Graham and Harvey, 2001; Eaton et al., 2020; Aktas, Boone, Witkowski, Xu and, 
Yurtoglu, 2021). In M&A valuation, Eaton et al. (2020) document that the product market space is more 
important as a factor for the selection of peers than the SIC industry classification.  
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A key step to isolate the PMC-driven component of SPI is identifying direct competitors, a 

challenging task as emphasized in Eckbo (1983). Broad industry classifications like SIC codes, 

which focus more on technology than competition and are known to be sticky, are not suited for 

our emphasis on product market interactions between rival firms.10 We therefore use the Text-

Based Network Industry Classification (TNIC) dataset introduced in Hoberg and Phillips (2010, 

2016).11 This dataset leverages Item 1 product descriptions from annual SEC 10-K filings to 

generate yearly similarity scores between U.S. firm pairs based on their product offerings. These 

scores serve as a widely accepted proxy for product market competition.  

To assemble our sample, we start from the TNIC dataset that spans the 1989 to 2021 period at the 

time of this writing. We keep the ten nearest neighbors (10NN) ranked by similarity scores as in 

Hoberg and Phillips (2010). Next, we apply the following filters to our sample: we retain only firms 

present in the Center for Research in Security Prices (CRSP) database,  keep ordinary U.S. shares 

(CRSP share class codes10 and 11), exclude penny stocks, and remove observations with missing 

data for shares outstanding (CRSP field 'shrout') or missing closing prices ('prc' CRSP field). We 

also exclude firm-year observations with fewer than 90 daily returns in a given year, as well as 

firms in financial (SIC codes 6000-6999) and utility industries (SIC codes 4000-4999). These filters 

reduce our initial sample of 171,536 firm-year observations to 94,695. 

Table 1 presents the sample characteristics by year. Column 1 lists the number of unique firms, 

column 2 reports the aggregate market value of equity at year-end in US$ billions, column 3 

provides the average similarity score for all firm pairs, and column 4 shows the average similarity 

score of firm pairs in the 10NN clusters.  

The peak number of unique firms in our sample occurred in 1997 with 4,405 firms. From that point 

onward, there is a steady year-by-year decline, reaching a low of 2,203 firms by 2020, followed by 

 
10 See Bhojraj, Lee, and Oler (2003) for a discussion on the limitations associated with SIC code 
classification to explain stock return comovements or to form group of firms with similar characteristics. 
11 Available at http://hobergphillips.tuck.dartmouth.edu/tnic_poweruser.htm.  
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a notable reversal in 2021 with 2,679 firms. The sharp decline in the number of U.S. listed firms 

over the last three decades has been well documented in the literature, raising concerns about a 

U.S. listing gap (Doidge, Karolyi, and Stulz, 2017). In terms of aggregate equity value, a first peak 

is reached in 1999, coinciding with the dot.com bubble, the second in 2007 before the financial 

crisis, and the third in 2021, the final year of our sample period. Notably, despites a drastic 

reduction in the number of unique firms from 1997 to 2021, the aggregate market value more than 

quintupled, driven largely by the rise of tech giants such as Google, Amazon, Facebook, Apple and 

Microsoft (GAFAM). In terms of similarity scores, the average similarity across all firm pairs is 

0.015 in our sample, while the one of the 10NN cluster is mechanically considerably higher at 

0.173. These statistics are in line with Hoberg and Phillips (2010). 

2.2. Regression specification to isolate PMC-driven SPI 

We measure stock price informativeness (SPI) using asset pricing regressions, building on Roll’s 

(1988) seminal work. The baseline model regresses the focal firm’s excess stock return on the 

excess returns of the market and industry portfolios: 

𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑀𝑀�𝑟𝑟𝑀𝑀,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + 𝛽𝛽𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼�𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + 𝜀𝜀𝑖𝑖,𝑡𝑡,    (1) 

where i denotes the focal firm, 𝑟𝑟𝑖𝑖,𝑡𝑡  is the firm’s stock return on day t, and 𝑟𝑟𝐹𝐹,𝑡𝑡, 𝑟𝑟𝑀𝑀,𝑡𝑡, and 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡  

represent the risk-free rate, the CRSP value-weighted market portfolio return, and the value-

weighted SIC3 industry portfolio return, respectively. This regression specification decomposes 

the firm’s stock returns into systematic components, driven by co-movements with market and 

industry returns, and an unexplained component, which captures firm-specific information. In 

particular, the inclusion of the industry portfolio return controls for common industry-wide 

shocks, such as technological changes or supply chain disruptions, that impact all firms in the 

industry. A larger unexplained component reflects weaker co-movement between the firm’s 

return and those of the market and industry, resulting in a lower 𝑅𝑅2 and indicating a greater 

amount of firm-specific information embedded in the stock price (Durnev et al., 2003). Therefore, 
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1 − 𝑅𝑅2 serves as a measure of SPI. Following Durnev, Morck, and Young (2004), we apply the 

logistic transformation to 1 − 𝑅𝑅2 to derive the total SPI (SPITOT) for each firm: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
1 − 𝑅𝑅𝑖𝑖2

𝑅𝑅𝑖𝑖2
� .                                                                  (2) 

The logistic transformation tackles the skewness and bounded nature of 1 − 𝑅𝑅2. 

We next augment the baseline model in Equation (1) by including the idiosyncratic stock returns 

of the 10NN rivals in the product market space:  

𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑀𝑀�𝑟𝑟𝑀𝑀,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + 𝛽𝛽𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼�𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + � 𝛽𝛽𝑖𝑖
𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑡𝑡

10

𝑗𝑗=1
+ 𝜀𝜀𝑖𝑖,𝑡𝑡,          (3) 

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑡𝑡  is the idiosyncratic return of rival j on day t, derived from a one-factor model.12. 

The inclusion of the 10NN rivals’ stock returns in Equation (3) enables us to isolate the effects of 

firm-specific competitive interactions while controlling for broader common market and industry 

shocks on stock return variations, as emphasized by de Bodt, Eckbo, and Roll (2024). We denote 

𝑅𝑅∗2 the 𝑅𝑅2 of this augmented model, and rely on the logistic transformation of 1 − 𝑅𝑅∗2 to quantify 

the residual SPI (SPIRES), which corresponds to SPI after accounting for product market 

interactions with the 10NN rivals: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
1 − 𝑅𝑅𝑖𝑖∗2

𝑅𝑅𝑖𝑖∗2
� .                                                                         (4) 

To identify the product market-driven component of stock price informativeness (SPIPMC), we take 

the difference between Equations (2) and (4):  

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑃𝑃𝑀𝑀𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 −𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅.                                                                         (5) 

2.3. Estimation of SPI variables 

We estimate the SPI variables by running stock return regressions for each firm-year using daily 

observations. We obtain stock price and return information from CRSP and factor data from 

 
12 Note that using raw rival returns instead of idiosyncratic rival returns yields similar results as a 
consequence of the regression anatomy formula (Angrist and Pischke, 2009). 
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Kenneth French’s data library.13 Variable definitions are provided in Appendix A. Table 2 presents 

the results obtained running these firm-year regressions. Panel A provides descriptive statistics 

for the daily returns and factor variables used in the firm-year stock return regressions. Panel B 

summarizes the 𝑅𝑅2 and adjusted 𝑅𝑅2 estimates obtained from the 94,695 firm-year stock return 

regressions, highlighting the explanatory power of the estimated models.   

We begin by summarizing the results of the one-factor (1F) model, which regresses the firm’s 

excess stock returns on the excess returns of the market portfolio. The average 𝑅𝑅2 is 13.15% (see 

Panel B, column 1), meaning that, on average, about 13% of the variation in firm excess returns is 

explained by market excess returns. In panel B, column 2, we summarize the results obtained 

estimating Equation (1), which corresponds to the 1F model expanded with the excess returns of 

the 3-digit SIC industry portfolio (1F+IND model) The average 𝑅𝑅2 increases by 3.82 percentage 

points.  

In Panel B, column 3, we further augment the model by including the daily idiosyncratic returns of 

the 10NN rivals (1F+IND+10NN model), as specified in Equation (3). Results show that the average 

𝑅𝑅2 increases by 8.70 percentage points, compared to the estimates from the 1F+IND model 

(Panel B, column 2). This increase in 𝑅𝑅2 is statistically significant at the 1% level. The size of the 

contribution of 10NN rivals’ idiosyncratic returns to the average 𝑅𝑅2 is remarkable, as it amounts 

to (roughly) two thirds of the explanatory power of the one factor model and two times the 

contribution of 3-digit SIC3 index. 

Figure 1 shows the yearly average 𝑅𝑅2 from these firm-level time series regressions, and the last 

column of Table 1 reports the change in 𝑅𝑅2 between the 1F+IND+10NN and 1F+IND models. The 

explanatory power of these models varies significantly over time, with the three models exhibiting 

similar trends, largely shaped by the 1F model. The 𝑅𝑅2 of the 1F model ranges from a low of 2.85% 

in 1993 to a high of 46.36% in 2011. Since 2011, it has gradually reverted to the pre-financial crisis 

 
13 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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level, consistent with the findings of Parsley and Poper (2020). We note also that the contributions 

of both the industry portfolio return and the 10NN rivals’ stock returns to 𝑅𝑅2 decrease 

substantially when the 𝑅𝑅2 of the 1F model reaches its peak. 

We use these regression results to calculate the SPI variables as specified in Equations (2), (4) 

and (5). Panel A of Table 3 reports the summary statistics for the three SPI variables. The mean 

value of SPITOT is 2.385 in our sample, consistent with previous literature (see, e.g., Chen, 

Goldstein, and Jiang, 2007; Bennett, Stulz, and Wang, 2020). The mean values of SPIPMC and SPIRES 

are 1.124 and 1.261, respectively. The decomposition of the total stock price informativeness 

indicates that both the PMC-driven and residual components carry almost equal amount of 

information, with average shares of 47% and 53%, respectively. This suggests that about half of 

the total firm-specific information in stock returns is generated through competitive product 

market interactions. 

2.4. Framework for testing the PMC channel of managerial learning 

To test whether product market interactions are an important source of information for managerial 

learning from stock prices, we follow existing literature and adopt a standard linear investment 

equation which relates the focal firm’s investment ratio to its own stock price, thereby estimating 

investment-to-Q sensitivities. Our analysis centers on the following regression specification: 

𝑆𝑆𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛽𝛽1𝑄𝑄𝑖𝑖,𝑡𝑡−1 + 𝑋𝑋𝑖𝑖,𝑡𝑡−1Γ + 𝜀𝜀𝑖𝑖,𝑡𝑡,                                              (6) 

where the dependent variable, 𝑆𝑆𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡, is the investment ratio of firm i at the end of year t. We 

consider three different investment measures for the dependent variable: capital expenditures 

(capex); research and development expenses (R&D); and total investment, measured as the sum 

of capex plus R&D plus cash acquisition minus asset sales, following Richardson (2006). All three 

investment measures are scaled by lagged total assets.14 𝑄𝑄𝑖𝑖,𝑡𝑡−1 is the Tobin’s Q of firm i at the end 

 
14 Scaling the investment variables by lagged fixed assets (property plant and equipment) instead of total 
assets does not alter our findings (unreported). 
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of year t – 1, serving as a proxy for the firm’s stock price at year-end.  𝑋𝑋 is the vector of control 

variables, with Γ representing the coefficient vector for these controls.  

Following prior research, our regression model controls for two important firm characteristics 

known to correlate with investment decisions: firm size, represented by the logarithm of total 

assets; and cash flow, measured as income before extraordinary items plus depreciation divided 

by total assets. The model also includes firm (𝛼𝛼𝑖𝑖) and year (𝛿𝛿𝑡𝑡) fixed effects. Year fixed effects 

absorb aggregate trends in investment, while firm fixed effects limit concerns about omitted 

variable biases due to time-invariant unobservable factors at the firm level. We report t-statistics 

based on clustered standard errors at the firm level. 𝜀𝜀𝑖𝑖,𝑡𝑡  is the error term.  

The regression coefficient 𝛽𝛽1 measures the sensitivity of firm investment to its own stock price. A 

positive 𝛽𝛽1 is a necessary condition for the learning hypothesis (i.e., managers learning from their 

firm’s stock prices). However, as emphasized by Foucault and Frésard (2014), this condition is not 

sufficient, as the firm’s Tobin’s Q may correlate with managers’ private information about the 

firm’s investment opportunities. Therefore, it is important to assess whether the coefficient 𝛽𝛽1 is 

sensitive to the degree of stock price informativeness (i.e., amount of firm-specific information in 

stock prices). Our focus is on firm-specific information related to competitive product market 

interactions. 

To test whether managerial learning is enhanced when stock prices incorporate more firm-

specific information generated by PMC, we augment the previous model with our information 

variable of interest, SPIPMC, the PMC-driven component of stock price informativeness, and its 

interaction with the firm’s Tobin’s Q. The augmented specification is as follows: 

𝑆𝑆𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛽𝛽1𝑄𝑄𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽2𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑃𝑃𝑀𝑀𝑃𝑃 + 𝛽𝛽3�𝑄𝑄𝑖𝑖,𝑡𝑡−1 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑃𝑃𝑀𝑀 � + 𝑋𝑋𝑖𝑖,𝑡𝑡−1Γ + 𝜀𝜀𝑖𝑖,𝑡𝑡.                (7) 

The regression coefficient 𝛽𝛽3 helps us evaluate whether managerial learning improves when stock 

prices better capture product market-driven competitive interactions. A statistically significant 
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positive coefficient suggests that firm investment becomes more sensitive to stock prices when 

they incorporate more information from product market-driven competitive interactions.  

In additional analyses, we control for direct learning by extending Equation (7) with the average 

Tobin’s Q of industry peers. We use either the average for all firms in the TNIC industry or that of 

the 10NN rivals. In these models, following Foucault and Frésard (2014), we also include the mean 

values of firm size and cash flow within the corresponding peer group as additional controls.  

2.5. Summary statistics 

To estimate the investment regressions introduced in Equations (6) and (7), we rely on stock price 

data from CRSP and investment and accounting data from Compustat. In addition to the filters 

used to gather the sample for the stock return regressions in Section 2.3, we follow Foucault and 

Frésard (2014) and implement additional filters for the investment regressions. Specifically, we 

exclude firms with negative sales or missing data on total assets, capital expenditures, or fixed 

assets. These filters further reduce our sample from 94,695 firm-year observations to 92,088.15  

Table 3 presents descriptive statistics for the main variables used in the learning tests, with 

variable definitions provided in Appendix A. To mitigate the influence of outliers, all financial ratios 

are winsorized at the top and bottom 1% of the distribution. The average Tobin’s Q is 2.219 in our 

sample. The mean values of both capex and R&D ratios are 6.5%. In addition to capex and R&D, 

when accounting for cash acquisitions, and asset sales, firm investment averages 17% of its 

lagged total assets. These statistics align with prior literature adopting similar variable definitions 

(see, e.g., Richardson, 2006; Chen, Goldstein, and Jiang, 2007; Foucault and Frésard, 2014; 

Edmans, Jayaraman, and Schneemeier, 2017).  

We also provide summary statistics for the peer group. Compared to the average focal firm, the 

average peer firm in both the TNIC industry and 10NN cluster is larger in terms of total assets but 

 
15 Note that data availability for some variables, along with the use of lagged observations in both the control 
variables and the denominator of the investment ratios, further reduces the sample size in the multivariate 
regressions. 
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has a comparable Tobin’s Q. In terms of operating cash flow, the mean values are comparable for 

the focal firm and TNIC peers but lower for 10NN peers. Notably, the median values across the 

three groups are similar, indicating that the 10NN cluster is more sensitive to the presence of 

outliers. 

3. Empirical evidence 

In this section, we begin by presenting the baseline investment results. Next, we turn to 

robustness checks and report results of additional investigations.  

3.1. Baseline investment results 

Table 4 presents our baseline investment results. We first estimate the investment-to-Q 

sensitivities in our sample using Equation (6), with three different investment measures as the 

dependent variables: capex in Panel A, R&D in Panel B, and total investment in Panel C. Column 

1 reports the result. For brevity, we do not report the coefficient estimates for the control variables 

(firm size and cash flow) and fixed effects, though they are included in the model. 

Starting with capex, consistent with previous studies (e.g., Chen, Goldstein, and Jiang, 2007; 

Foucault and Frésard, 2014), firm investment is positively and significantly related to Tobin’s Q. 

The coefficient estimate of 𝑄𝑄𝑖𝑖,𝑡𝑡−1 in the capex regression is 0.0078 with a t-statistic of 21.76.  

Specifically, a one standard deviation increase in the average firm’s Tobin’s Q is associated with 

an increase of 1.57 percentage point in its capex ratio. This economic effect is substantial, as the 

corresponding change in the capex ratio represents 24.14% of its mean value of 6.5% (see Table 

3). In column 1 of Panels B and C, we observe a similar positive effect of Tobin’s Q on R&D and 

total investment ratios. The economic magnitude is comparable for total investment, but the 

effect on R&D is larger than that on capex.  A one standard deviation increase in the average firm’s 

Tobin’s Q is associated with an increase of 2.05 percentage points in its R&D ratio and 4.59 

percentage points in its total investment ratio. These economic effects are substantial, 

representing 31.57% of the mean value of R&D and 26.98% of the mean value of total investment 

ratio. 
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Next, we estimate Equation (7), which augments the initial investment model by including our 

independent variable of interest, SPIPMC, and its interaction term with Tobin’s Q. For brevity, the 

coefficient of SPIPMC term is not reported. The interaction term coefficient reported in column 2 

allows us to test the sensitivity of the firm’s investment decision to its stock price information 

increases when product market rivals’ returns contribute more to its stock price informativeness. 

Concerning capex, the estimation results confirm that PMC-driven stock price informativeness 

enhances managerial learning, with a statistically significant positive coefficient for the 

interaction term at the 5% level (see Panel A). Economically, the effect is also noteworthy: a one 

standard deviation increase in SPIPMC leads to a 0.00043 increase in the sensitivity of the capex 

ratio to Tobin’s Q. This represents approximately a 6% increase relative to the baseline sensitivity 

observed in the capex model. In column 2 of Panels B and C, we repeat the analysis with R&D and 

total investment as the dependent variables, respectively. The interaction term is positive and 

statistically significant at the 1% level in both panels.   

Comparing the PMC-driven information effects on the three investment variables in terms of 

economic magnitude, we observe the following ranking: the highest effect is on R&D, followed by 

total investment and capex, in the order.  A one standard deviation increase in SPIPMC leads to a 

26.24% (11.72%) increase in the sensitivity of R&D (total investment) to Tobin’s Q. This ordering of 

the economic effect does not come out as a surprise, given the critical role of R&D as an input for 

innovation and growth (e.g., Brown, Fazzari, and Petersen, 2009). Unlike capex, which serves both 

to acquire new assets and maintain or replace existing ones, R&D is focused on future growth. 

Additionally, R&D is typically harder to finance through external sources of funding, and many 

firms face financing constraints for their investments in innovation (Hall, 2002). This unique 

characteristic of R&D likely explains its greater sensitivity to information feeding from stock 

prices, especially when those prices incorporate significant product market-driven competitive 

information.  
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Firms also learn directly from the stock prices of their industry rivals (Foucault and Frésard, 2014; 

Yan, 2024). To control for this additional learning channel, we augment our specification by 

including the average Tobin’s Q of industry peers, excluding the focal firm. We use two alternative 

definitions of industry peers, all firms in the corresponding TNIC industry (column 3), and 10NN 

closest rival firms respectively (column 4).  

In Panel A, where the dependent variable is the capex ratio, the coefficient estimate of the industry 

peers’ Tobin’s Q is significantly positive in both columns 3 (TNIC peers) and 4 (10NN peers). This 

confirms the presence of a direct learning channel from rival stock prices to capex investment 

decisions, consistent with the findings of Foucault and Frésard (2014). However, in Panels B and 

C, where R&D and total investment ratios are the dependent variables, coefficient estimates of 

industry peers’ Tobin’s Q are either negative or statistically insignificant. This suggests that direct 

learning from rival stock prices plays a less prominent role in these contexts. In the three panels, 

the coefficient of the interaction between the focal firm Tobin’s Q and SPIPMC is positive and 

statistically highly significant, confirming the importance of the PMC information channel. 

Overall, our results suggest that the learning effect extends beyond simply tracking rivals’ stock 

prices, highlighting the importance of understanding how PMC-driven interactions impact the 

focal firm’s stock price informativeness and enhance learning form its own stock price signals.  

3.2. Additional checks and results 

Table 5 presents various tests to assess the robustness of our baseline results, replicating the 

specification in column 3 of Table 4. Column 1 of Table 5 shows that our main finding remains 

robust with an alternative proxy for the product market-driven component of stock price 

informativeness. This proxy corresponds to the relative increase in R² when the 10NN rivals’ 

idiosyncratic stock returns are included as independent variables in the stock return 
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regressions.16 This test confirms that our conclusions hold across two different measures of stock 

price informativeness.  

In column 2, we replace the one-factor model with the Fama-French five-factor model (Fama and 

French, 2015), capturing additional risk factors. The considered five factors are market, size, 

value, profitability, and investment. The increase in the average 𝑅𝑅2 after the inclusion of the 10NN 

rivals’ idiosyncratic returns is both statistically significant and of similar magnitude in comparison 

to our baseline stock return model (i.e., one-factor model augmented with the SIC3 industry 

portfolio return). The learning effect persists, demonstrating that our findings are not sensitive to 

the choice of alternative asset pricing models. 

In column 3, we incorporate asymmetric betas in the baseline stock return model, following the 

methodology outlined in Ang, Chen, and Xing (2006). This adjustment accounts for firms’ 

differential responses to good and bad news about their rivals. Specifically, we interact each of 

the 10NN rivals’ idiosyncratic returns with dummy variables that distinguish between positive and 

negative idiosyncratic returns. This allows us to estimate two distinct beta coefficients for each 

rival. Our results continue to support the presence of product market-driven learning. 

In column 4, we control for managerial private information using earnings surprises as a proxy, 

ensuring that managers rely on stock prices to access information beyond their private 

knowledge. Following, Chen, Goldstein, and Wang (2007), earnings surprises (denoted as ERC, or 

Earnings Response Coefficient) are measured as the average of absolute 3-day abnormal stock 

returns (in %) over the prior year’s four quarterly earnings announcements. Abnormal returns are 

market-adjusted using the value-weighted CRSP index. The intuition behind the use of earnings 

surprises is that managers have access to earnings information before its public release; thus, 

the surprise in the announcement serves as a proxy for the extent of managerial private 

information. As column 4 shows, in all three panels, ERC has a statistically insignificant negative 

 
16 More explicitly, we use 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑅𝑅𝑖𝑖

∗2−𝑅𝑅𝑖𝑖
2

𝑅𝑅𝑖𝑖
2 � as an alternative proxy for SPIPMC, see Section 2.2 for the notation.  
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effect on the sensitivity of investment to Tobin’s Q. Most importantly, in all three panels, the 

coefficient estimate of our interaction term of interest, Q × SPIPMC, is almost insensitive to 

controlling for managerial private information. This result indicates that SPIPMC reflect some 

information that is not known to managers. 

In column 5, we use analyst coverage as additional proxy for managerial private information. 

Chen, Goldstein, and Wang (2007) argue that a large fraction of the information analysts process 

is derived from their interactions with managers. If this indeed the case, information produced by 

analysts may impact stock prices but without necessarily affecting managerial decisions, such 

as corporate investment. This reasoning predicts a negative relationship between analyst 

coverage and investment-to-Q sensitivity. We measure analyst coverage, denoted as #Analyst in 

column 5 of Table 5, as the logarithm of one plus the number of analysts issuing forecasts or 

recommendations in the previous year. As predicted, and consistent with the findings in Chen, 

Goldstein, and Wang (2007), analyst coverage attenuates the sensitivity of investment to Tobin’s 

Q, with the effects being statistically significant for both R&D and total investment. With the 

inclusion of analyst coverage, our interaction term of interest, Q × SPIPMC, remains significantly 

positive for both R&D and total investment. Only the capex result does not survive to the inclusion 

of analyst coverage in our specification.  

Lastly, column 6 presents results of a placebo test, where we randomly assign 10 firms as nearest 

rivals to the focal firm and re-estimate the information variable, SPIPMC, using the idiosyncratic 

returns of these pseudo rivals. The statistically insignificant interaction term coefficient confirms 

that the learning effect is specifically driven by actual product market competitive interactions, 

rather than by chance.  

As an additional investigation and to get a better sense of the magnitude of the PMC channel, we 

compare the contribution of residual firm-specific information in stock returns (after controlling 

for co-movements with the returns of the 10NN rivals) to managerial learning with the one of PMC-

driven stock price informativeness. This should give some indication about the relative economic 
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importance of this latter one. Table 6 presents the results. The dependent variable in columns 1-

2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total investment ratio, respectively. In columns 1, 

3 and 5, we employ the investment model with total stock price informativeness (SPITOT) as the 

information variable. In columns 2, 4, and 6, we decompose the effect of SPITOT into the effects of 

its two components, SPIRES and SPIPM following the method outlined in Section 2.2, while also 

controlling for the Tobin’s Q of industry peers.  

Consistent with prior literature (e.g., Chen, Goldstein, and Jiang, 2007), the finding in column 1 

shows that a higher stock price informativeness enhances the sensitivity of the capex ratio to 

Tobin’s Q. The economic impact is substantial, with a one standard deviation increase in SPITOT is 

associated with 11.29% increase in the capex-to-Q sensitivity. This effect is even more 

pronounced for R&D and total investment, with respective increases of 39.87% and 17.04% in 

columns 3 and 5. 

Column 2, that focuses on capex investment, shows that although both the residual and PMC-

driven components of stock price informativeness interact positively with Tobin’s Q, only the 

residual component shows a statistically significant effect. In contrast, columns 4 and 6, which 

respectively focus on R&D and total investment, reveal a different picture: both the PMC-driven 

and residual components serve as significant sources of information for managerial learning. In 

both cases, the economic impact of the PMC-driven component is as substantial as that of the 

residual component (see point estimates of coefficients of interaction terms.  

These results collectively emphasize the substantial impact of stock price informativeness 

improvements driven by product market competitive interactions on managerial learning, 

particularly in areas with potentially high growth opportunities such as R&D investment. 

4. Cross-sectional determinants of managerial learning  

We consider five contexts that may amplify or diminish managerial learning from stock prices to 

better understand cross-sectional determinants of stock price-induced managerial learning. 
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These are financial constraints, information environment quality, competition intensity, R&D 

intensity, and industry leadership. Table 7 reports the results of the cross-sectional comparisons 

by replicating the specification in column 3 of Table 4. The dependent variable in columns 1-2, 3-

4, and 5-6 is the capex ratio, R&D ratio, and total investment ratio, respectively. For brevity we only 

report the coefficient estimate of the interaction term of interest, Q × SPIPMC. For each panel-

specification, the last row reports z-statistics for a test of the difference in the coefficients of Q × 

SPIPMC between the corresponding two sub-samples. 

Financial constraints. First, we examine the firm’s financial constraint status. Financially 

constrained firms have incentives to allocate their scarce resources to most profitable 

opportunities and may therefore be more willing to listen to their investors (Bennett, Stulz, and 

Wang, 2020). However, these firms may also have limited flexibility in adjusting their investment 

behaviors based on stock price information (Chen, Goldstein, and Jiang, 2007). To determine 

which of these potential effects dominates in our sample, Panel A compares firms with low versus 

high financial constraints, using three measures of financial constraints: the KZ index (Kaplan and 

Zingales (1997), the WW index (Whited and Wu, 2006), and the SA index (Hadlock and Pierce, 

2010). Firms are classified as having low (high) financial constraints if they rank in the bottom (top) 

tercile of the sample for a given year. Across the three financial constraint measures, the cross-

sectional effects of SPIPMC on the R&D investment-to-Q sensitivity is stronger for the low financial 

constraints subsample (columns 3 and 4). Financial constraints appear not to mitigate the effect 

of SPIPMC on investment-to-Q sensitivity for capex (columns 1 and 2) and total investment 

(columns 5 and 6) decisions. These results echo findings in Chen, Goldstein, and Jiang (2007), 

suggesting that firms are more responsive to stock prices when they are more financially flexible, 

but this effect seems to be specific to R&D investments. 

Information environment quality. Next, we examine how cross-sectional heterogeneity related to 

the quality of the information environment in the 10NN cluster influences the effect of SPIPMC on 

the investment-to-Q sensitivity. We hypothesize that learning from stock price will be amplified 
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when the focal firm’s stock price reflects information from rival firms’ stock prices that are 

relatively more efficient. The high- and low-quality informational environment subsamples are 

constructed based on three variables that capture key aspects of the information environment: (i) 

cluster size, the total market value of equity of the 10NN rivals, as large firms tend to be more 

visible, produce more information, and have more liquid stocks; (ii) Analyst coverage, the total 

number of analysts following the 10NN rivals, because analyst activity promotes information 

dissemination and price discovery (Brennan, Jegadeesh, and Swaminathan, 1993; Huang, 

Lehavy, Zang, and Zheng, 2018); and (iii) Stock liquidity, the inverse of the average stock illiquidity 

of the 10NN rivals, as more liquid stocks are expected to better reflect private information, with 

liquidity known to facilitate arbitrage (Roll, Schwartz, and Subrahmanyam, 2007).17 

For each of these three variables, we assign tercile-based scores annually, with values of 1, 2, and 

3 for observations in the first, second, and third terciles, respectively. These scores are then 

summed across the three variables to create an information environment index, ranging from 3 to 

9. Each year, focal firms are classified into high- or low-quality information environments based 

on whether the index falls into the top or bottom tercile of the distribution, respectively. The index 

is structured such that a higher score indicates a higher-quality information environment.  

Panel B presents the cross-sectional analysis results, comparing firms within high- and low- 

quality information environments. Across all three investment measures, the coefficient point 

estimates of the interaction term, Q × SPIPMC, are positive and relatively larger for the subsample 

of focal firms interacting with rivals in a high-quality information environment. The difference in 

coefficient estimates of the interaction term between the high- and low-quality subsamples is 

statistically significant for both capex and R&D investments. Consistent with our conjecture, firms 

 
17 Table 3 reports summary statistics for these three variables. The average cluster size in our sample is $39 
billion. The total number of analysts covering the 10NN rivals averages 80, translating to about 8 analysts 
per rival firm, a statistic which is in line with prior literature (Chang, Dasgupta, and Hilary, 2006; Chen, 
Goldstein, and Jiang, 2007;  Yu, 2008). Stock illiquidity is calculated as in Amihud (2002). The average stock 
illiquidity of the 10NN cluster is 0.841, notably higher than the 0.337 reported by Amihud (2002) for NYSE-
only firms. Our sample includes also NASDAQ stocks, and NASDAQ firms are known to display higher stock 
illiquidity ratios (Brennan, Huh, and Subrahmanyam, 2013). 
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show more investment responsiveness to their stock prices when those prices correlate with 

relatively more informative rival stock prices. 

Competition intensity. Adam Smith was among the first economists to emphasize that a lack of 

competition poses a significant threat to effective management (Smith, 1776). In non-competitive 

industries, managers without proper incentives may be tempted to enjoy the quiet life (Bertrand 

and Mullainathan, 2003), often evading difficult decisions and costly efforts. Competition is thus 

regarded as an important external governance mechanism that enforces managerial discipline, 

helping to reduce inefficiencies and preventing bankruptcies in extreme cases (Alchian, 1950; 

Stigler, 1958; Grossman and Hart, 1983). We therefore expect managers to be more responsive to 

market signals related to product market interactions in competitive industries, particularly when 

making growth-oriented investment decisions such as R&D.  

Panel C explores heterogeneity effects arising from variations in the competitive landscape faced 

by the focal firm. We use two text-based proxies of competition obtained thanks to information 

collected in the business and product descriptions in firms’ 10-K filings item 1: (i) the average 

similarity score between the focal firm and its 10NN rivals; and (ii) the product market fluidity of 

the focal firm. A higher average similarity score suggests that firms within the same product 

market offer closely related products, indicating stronger competitive interactions (Hoberg and 

Phillips 2010, 2016). In contrast, product market fluidity assesses the intensity of competitive 

dynamics, quantifying ex-ante competitive threats to the firm (Hoberg, Phillips, and Prabhala, 

2014).  

The high and low subsamples are constructed based on the terciles of the respective competition 

proxy distributions. Consistent with economic theory, for both competition proxies the effect of 

SPIPMC on investment-to-Q sensitivity is significantly larger in highly competitive environments for 

R&D investments. For capex investment, this difference in coefficient estimates is larger in the 

low competition environment when using product market fluidity as a proxy. One possible 

interpretation of this latter result is that firms facing ex-ante competitive threats adopt more 
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conservative financial policies, such as precautionary cash savings (Hoberg, Phillips, and 

Prabhala, 2014). Consequently, these firms may prioritize responsiveness to market signals for 

growth-oriented investments like R&D, while becoming less sensitive to such signals for CAPEX 

investments.   

R&D-intensity and focal firm’s leadership status. The last factors that we examine as potential 

drivers of cross-sectional heterogeneity of the documented learning effect are the R&D-intensity 

of the product market in which the firm operate and its leadership status We anticipate in 

particular that industry leaders are likely to closely monitor rival actions to maintain a competitive 

edge, given the heightened risk of disruption posed by competitor moves. Panels D and E report 

the results.  

In Panel D, we measure R&D-intensity using the average R&D ratio of the 10NN rivals and group 

firms into high and low R&D-intensive product market clusters based on terciles of that 

distribution. As expected, across the three investment measures, the effect of SPIPMC on 

investment-to-Q sensitivity is more pronounced in the high R&D-intensive product market 

subsample. However, the difference between the high and low R&D-intensive groups is 

statistically significant only for R&D investments.  

In Panel E, we compare industry leaders to industry followers. We identify industry leaders using 

two distinct proxies. For the first proxy, following de Bodt, Eckbo, and Roll (2024), we define 

leaders as focal firms with both sales and return on assets exceeding their industry median in a 

given year. The second proxy identify leaders as focal firms with market shares in their product 

market (i.e., the focal firm plus the 10NN rivals) that fall within the highest tercile of the 

distribution for that year. Consistent with our arguments, the product-market driven learning 

effect is significantly more pronounced for industry leaders, but only for R&D investments. 

5. Additional tests 
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In this section, we perform two additional tests to further explore the robustness of our results. 

We begin by presenting the endogeneity test employed to strengthen the causal interpretation of 

our results, followed by a discussion of additional investigations that examine the relationship 

between PMC-driven signals and innovation outcomes. 

Endogeneity test. Our primary finding that firms with higher PMC-driven stock price 

informativeness show evidence of greater sensitivity to Tobin's Q indicates that PMC signals are 

fundamental drivers of investment decisions. However, this relationship may be contaminated by 

factors that impact both price discovery and investment. As pointed out by Bennett, Stulz, and 

Wang (2020), technological shocks represent a potential omitted factor that could enhance price 

informativeness and simultaneously influence firm decisions. To mitigate this concern, we adopt 

the authors’ approach and employ a quasi-natural experiment to address endogeneity issues in 

our analysis. Specifically, we examine the inclusion of the focal firm’s 10NN rivals in the S&P 500 

index as an exogenous shock to stock price informativeness, particularly to its PMC-driven 

component. 

The inclusion of a rival firm in the S&P 500 index is beyond the control of the focal firm and is likely 

to have a significant impact on the co-movement of the rival firm’s stock returns with the broader 

market index. This effect, as documented in prior literature (Vijh, 1994; Barberis, Shleifer, and 

Wurgler, 2005), can decrease the co-movement between the idiosyncratic stock returns of the 

rival firm and the focal firm. We first test this conjecture in Panel A of Table 8, using total stock 

price informativeness (SPITOT) as the dependent variable in column 1, and its two components: the 

product-market induced component (SPIPMC) in column 2 and the residual component (SPIRES) in 

column 3. The independent variable of interest is Addition, which equals one if at least one of the 

10NN rivals of the focal firm is added to the S&P 500 index over the previous three years and zero 

otherwise.  The coefficients of Addition in all models are negative, but statistically significant at 

5% level in columns 1 and 2. These results support the conjecture that the addition of rival firms 
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to the S&P 500 reduces stock price informativeness, with this negative effect primarily driven by 

the impact on the PMC-induced component.   

After confirming that S&P 500 additions of rival firms serve as a negative exogeneous shock to 

SPIPMC, we turn to the investment regression analyses. We are not in position to replicate the 

Bennett, Stulz, and Wang (2020) difference-in-differences specification because we focus on the 

coefficient of an interaction variable but parallel the authors’ approach by interacting the Tobin’s 

Q variable with the Addition dummy variable, used in Panel A. Panel B of Table 8 replicates 

columns 2 and 3 of Table 4, respectively in columns 1, 3, and 5, and columns 2, 4, and 6, with this 

newly defined interaction term. The dependent variable in columns 1-2, 3-4, and 5-6 is the capex 

ratio, R&D ratio, and total investment ratio, respectively. The coefficient of the interaction variable 

of interest, Qi × Addition, is significantly negative in columns 3 and 4, with R&D ratio as dependent 

variable. The effects on capex and total investment are not statistically significant, indicating that 

R&D investment is particularly responsive to PMC signals compared to other forms of investment. 

Innovation outcomes. To further test the robustness of our R&D results, we extend our analysis to 

variables capturing the outcomes of innovation in the years following the R&D expenditure. Since 

R&D investments may take time to translate into tangible innovations (Griliches, 1990), Table 9 

replicates our baseline analysis using three distinct innovation outcomes over the next three years 

as dependent variables. In columns 1-2, the dependent variable is patent count, which 

corresponds to the total number of patents granted to the focal firm over the next three years, 

scaled by the total number of patents granted to all firms within the same period. In columns 3-4, 

the dependent variable is patent citations, which corresponds to the total number of future 

citations received by the patents granted to the focal firm over the next three years, scaled by the 

total number of future citations received by patents across all firms during the same period. In 

columns 5-6, the dependent variable is self-fluidity, a variable introduced in Hoberg, Phillips, and 

Prabhala (2014) to proxy changes in a firm’s product offerings over time. It is calculated as one 

minus the cosine similarity between the firm’s current and previous years’ business descriptions. 
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We use as dependent variable the average of the focal firm’s self-fluidity over the next three years 

and apply a logistic transformation to tackle the boundedness of the variable.  

The coefficients of the interaction term of interest, Qi × SPIPMC, is consistently positive and 

statistically significant across all specifications, indicating that product market-induced stock 

price informativeness amplifies the sensitivity of innovation outcomes to the focal firm’s Tobin’s 

Q. These findings further underscore the importance of PMC signals in driving growth-oriented 

investment decisions, such as R&D investment. 

6. Conclusion 

This paper examines product market interactions as potential drivers of stock returns and 

quantifies their impact on stock price informativeness driving managerial learning. By analyzing 

stock return regressions, we find that the 𝑅𝑅2 increases on average by 8.70 percentage points after 

accounting for strategic interactions with the firm’s nearest product market rivals, an 

economically and statistical highly significant effect. We further show that stock prices reflecting 

these dynamics facilitate more effective learning, as managers incorporate these signals into 

their investment decisions. The contribution of the PMC channel to managerial learning is 

especially robust and strong for R&D investments and is further amplified when focal firms are 

financially unconstrained, hold industry leadership positions, and interact with rivals from high-

quality information environments. The learning effect is also more pronounced in R&D-intensive 

and competitive product market clusters. Further analysis on innovations outputs, such as 

patents and changes in product offerings, supports the importance of managerial learning from 

product market signals in the context of R&D investments. 

Our findings underscore the role of PMC-driven improvements in stock price informativeness in 

shaping corporate decision-making. Building on past research on feedback effects from financial 

markets, this study highlights how managerial learning benefits from stock prices that better 

reflect product market competitive interactions. Our contribution to the literature on managerial 
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learning is twofold: First, we pinpoint product market competitive interactions as a crucial 

component of the information driving learning. Second, we show that this PMC-driven component 

plays a substantial role in investment decisions, especially in R&D, where timely strategic 

adjustments are essential for firm survival and growth. 
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Appendix A. Variable definitions 

Unless explicitly mentioned otherwise, Compustat is the data source for financial- and 
accounting-related variables, CRSP for stock market-related variables, K. French Data Library1 
for factor returns, and Hoberg and Phillips Data Library2 for product market variables. Analyst 
coverage data are from the Institutional Brokers’ Estimate System (IBES). Patent data are from 
the KPSS patent data library (Kogan, Papanikolaou, Seru, and Stoffman, 2017).3 
 
A.1. Returns and factors 

ri,t: firm i’s stock return on day t. 

rF,t: risk-free rate on day t. 

idio ri,t: firm 𝑖𝑖’s daily idiosyncratic return on day t, which corresponds to the residual of the one-
factor model. 

Mktrft: excess market return, which corresponds to the return of the value-weighted market 
portfolio on day t less the risk-free rate on the same day. 

rIND,t: return of the value-weighted 3-digit SIC industry portfolio on day t. 
 
A.2. Stock price informativeness (SPI) variables 

SPITOT: total stock price informativeness, calculated as the logistic transformation of 1 − 𝑅𝑅2, 
where R2 is obtained from the baseline model (1F+IND). 

SPIRES: residual stock price informativeness, calculated after augmenting the baseline model 
with the stock returns of the 10 nearest neighbors (10NN) rivals. It is defined as the logistic 
transformation of 1 − 𝑅𝑅∗2, where 𝑅𝑅∗2 represents the R2 of the full model (1F+IND+10NN). 

SPIPMC: component of stock price informativeness driven by product market interactions. It is 
calculated as the difference between SPITOT and SPIRES. 
 
A.3. Firm characteristics 

Capex: capital expenditures divided by lagged total assets. 

R&D: research and development expenses divided by lagged total assets. 

Total investment: the sum of capex plus R&D plus cash acquisition minus asset sales, divided 
by lagged total assets.  

Patent count: total number of patents granted to the focal firm over the next three years, scaled 
by the total number of patents granted to all firms within the same period.  

Patent citations: total number of future citations received by the patents granted to the focal 
firm over the next three years, scaled by the total number of future citations received by patents 
across all firms during the same period.  

Self-fluidity: a variable developed by Hoberg, Phillips, and Prabhala (2014) to proxy changes in a 
firm’s product offerings over time. It is calculated as one minus the cosine similarity between 
the firm’s current and previous years’ business descriptions.  

Qi: Tobin’s Q of the focal firm i, calculated as the sum of total assets plus market value of equity 
minus book value of equity divided by total assets.  

Firm size: log of total assets in US$ million.  

Cash flow: income before extraordinary items plus depreciation divided by total assets. 

 
1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
2 https://hobergphillips.tuck.dartmouth.edu. 
3 https://github.com/KPSS2017. 



ERC: average of the absolute 3-day abnormal stock returns (in %) over the prior year’s four 
quarterly earnings announcements, where abnormal returns are market-adjusted based on the 
value-weighted CRSP index.  

#Analyst: number of analysts issuing forecasts or recommendations for the firm in the previous 
year. 

Leader: a dummy variable that identifies firms with both sales and ROA above the median 
values for their SIC3 industry in a given year. 

Market share: the firm’s sales as a proportion of total sales within its 10NN cluster.  

Product market fluidity: a text-based firm-level measure of competitive threat, introduced in 
Hoberg, Phillips, and Prabhala (2014), which captures the extent of competitive dynamism 
based on product descriptions and rival moves reported in firms' 10-K filings. 

SA index: The Size-Age (SA) index constructed following Hadlock and Pierce (2010).  

KZ index: The Kaplan-Zingales (KZ) index constructed following Kaplan and Zingales (1997).   

WW index: The Whited-Wu (WW) index constructed following Whited and Wu (2006).   
 
A.4. Industry and 10NN cluster characteristics 

Q-i: the average Tobin’s Q of all firms, excluding the focal firm, in the corresponding TNIC 
industry. 

Q10NN: the average Tobin’s Q of the focal firm’s 10NN rivals. 

Mean similarity score: the average similarity score of the focal firm with its 10NN rivals. 

Mean R&D: the average R&D ratio of the focal firm’s 10NN rivals.  

Cluster size: total market value of equity of the focal firm’s 10NN rivals in $US billions. 

Analyst coverage: total number of analysts following the focal firm’s 10NN rivals. 

Stock illiquidity: the average Amihud illiquidity ratio of the focal firm’s 10NN rivals. The Amihud 
stock illiquidity ratio is calculated as the yearly average of the firm’s daily ratio of absolute 
return to dollar volume. The ratio is multiplied by 106 for proper display, as in Amihud (2002).  

Addition: a dummy variable equal to one if at least one of the 10 nearest rivals of the focal firm 
has been included in the S&P 500 index over the previous three years and zero otherwise. 

 

  



 
Figure 1. Average R² by year  
 
This figure presents yearly average R² from firm-level time-series regressions. The sample covers the 1989–
2021 period and includes firms from the Hoberg and Phillips universe that meet the necessary data 
requirements (see Section 2.1). 1F refers to the one-factor model, in which the firm’s daily excess stock 
return is regressed on mktrf, which corresponds to the excess return of the CRSP value-weighted market 
portfolio. 1F+IND builds on this by adding the excess return of the value-weighted 3-digit SIC industry 
portfolio, as an additional independent variable. Finally, 1F+IND+10NN extends the model further by 
incorporating the idiosyncratic returns of the 10 most similar rivals in the product market space, as 
determined by their similarity scores (see Equation 3). 
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Table 1. Sample characteristics by year  
 
The table provides statistics of firms by year. The sample spans the 1989–2021 period and includes firms 
from the Hoberg and Phillips universe that meet the necessary data requirements (see Section 2.1). The 
first two columns present respectively the number of firms in the sample each year and the corresponding 
aggregated market value of equity at year-end, in US$ billions. Column 3 reports the average similarity 
score of all firm pairs. Column 4 reports the average similarity score of firm pairs in the 10NN clusters. 
Column 5 shows the average change in the R2 after including the idiosyncratic stock returns of the 10NN 
rivals in the baseline stock return regression model. 
 

Year 
Number of 

firms 
Aggregate  

market value 
Similarity score 

all firms 
Similarity score 

10NN cluster ΔR2 

(1) (2) (3) (4) (5) 
1989 2,729 1,876 0.013 0.158 5.81% 
1990 2,589 1,801 0.013 0.157 8.35% 
1991 2,651 2,448 0.013 0.165 9.19% 
1992 2,977 2,503 0.014 0.167 8.70% 
1993 3,345 2,836 0.013 0.166 8.76% 
1994 3,685 2,935 0.013 0.169 7.90% 
1995 3,905 3,972 0.014 0.169 9.44% 
1996 4,332 5,089 0.015 0.175 8.85% 
1997 4,405 6,414 0.015 0.175 8.70% 
1998 3,998 8,036 0.014 0.171 9.14% 
1999 3,837 10,421 0.015 0.168 10.03% 
2000 3,410 8,912 0.015 0.169 9.75% 
2001 3,128 8,552 0.015 0.171 8.43% 
2002 2,859 6,549 0.015 0.168 7.27% 
2003 2,844 8,542 0.015 0.167 8.27% 
2004 3,016 9,337 0.015 0.167 8.45% 
2005 2,931 9,762 0.015 0.167 8.85% 
2006 2,903 10,430 0.014 0.168 8.04% 
2007 2,791 11,122 0.015 0.170 8.56% 
2008 2,288 6,990 0.014 0.167 7.64% 
2009 2,188 8,851 0.014 0.164 7.59% 
2010 2,411 10,135 0.014 0.164 7.32% 
2011 2,333 10,207 0.014 0.167 5.90% 
2012 2,269 11,294 0.015 0.170 8.20% 
2013 2,303 14,750 0.015 0.174 8.63% 
2014 2,340 15,150 0.016 0.181 8.96% 
2015 2,347 14,870 0.017 0.184 8.96% 
2016 2,228 15,490 0.017 0.185 10.04% 
2017 2,272 18,667 0.017 0.187 9.44% 
2018 2,266 17,352 0.019 0.194 9.05% 
2019 2,233 22,136 0.019 0.200 9.20% 
2020 2,203 28,055 0.020 0.194 11.76% 
2021 2,679 35,636 0.021 0.196 11.19% 

Average 2,870 10,640 0.015 0.173 8.70% 
 

  



Table 2. Product market competition and stock price informativeness  
 
This table reports descriptive statistics and regression results relating product market competition and the 
stock price informativeness of the focal firm i. Panel A reports summary statistics of the variable used to 
run the firm-year stock return regressions (see Section 2.3), while Panel B displays summary statistics of 
the R2 derived from those regressions. The sample covers the 1989–2021 period and includes firms from 
the Hoberg and Phillips universe that meet the necessary data requirements (see Section 2.1). Variable 
definitions are provided in Appendix A. In Panel B, 1F refers to the one-factor model, in which the firm’s 
daily excess stock return is regressed on mktrf, that corresponds to the excess return of the CRSP value-
weighted market portfolio. 1F+IND builds on this by adding the excess return of the value-weighted 3-digit 
SIC industry portfolio as an additional independent variable. Finally, 1F+IND+10NN extends the model 
further by incorporating the idiosyncratic returns of the 10 most similar rivals in the product market space, 
as determined by their similarity scores (see Section 2.2). SD stands for the standard deviation. SD Mean 
corresponds to the standard error of the mean. Difference in Means is the difference of means between 
successive columns, and t-stat is the corresponding Student’s t statistic.  
 
Panel A. Summary statistics of variables used in the stock return regressions  

 Mean p25 p50 p75 SD 
ri 0.086% -1.366% 0.000% 1.354% 3.848% 
rF 0.012% 0.003% 0.012% 0.020% 0.009% 
idio ri 0.000% -1.313% -0.084% 1.148% 3.673% 
mktrf 0.038% -0.430% 0.070% 0.550% 1.093% 
rIND 0.097% -0.677% 0.088% 0.859% 1.758% 

 
Panel B. R2 of firm-level stock return regressions 

 
1F 

 model 
1F+IND  
model 

1F+IND+10NN 
model 

 (1) (2) (3) 
Firm-year observations 94,695 94,695 94,695 
R2    

Mean 13.15% 16.96% 25.66% 
SD Mean 0.05% 0.06% 0.06% 
Skewness 1.602 1.404 1.131 
Kurtosis 5.418 4.399 3.708 
Difference in Means 
[t-stat]  

3.82% 
[48.60] 

8.70% 
[103.48] 

  



Table 3. Summary statistics 
 
This table reports summary statistics of variables used in our analyses. Variable definitions are in Appendix 
A.  
 

 Mean p25 P50 p75 SD 
A. Stock price informativeness  
SPITOT 2.385 1.032 2.222 3.588 1.834 
SPIRES 1.261 0.588 1.369 1.998 1.018 
SPIPMC 1.124 0.359 0.757 1.539 1.076 

B. Firm characteristics      
Capex  0.065 0.019 0.039 0.076 0.083 
R&D  0.065 0.000 0.006 0.077 0.135 
Total investment 0.170 0.047 0.104 0.210 0.213 
Patent count (in %) 0.022 0.000 0.000 0.003 0.176 
Patent citations (in %) 0.026 0.000 0.000 0.002 0.343 
Self-fluidity (in %) 20.364 9.273 15.793 26.270 16.306 
Qi 2.219 1.147 1.575 2.469 2.012 
Firm size 5.673 4.165 5.558 7.084 2.061 
Cash flow 0.018 0.011 0.074 0.122 0.239 
ERC (in %) 6.442 3.398 5.398 8.305 4.315 
#Analyst 7.303 1.000 5.000 10.000 8.268 
Leader 0.373 0.000 0.000 1.000 0.484 
Marke share 0.079 0.012 0.035 0.094 0.118 
Product market fluidity (in %) 6.737 4.124 6.083 8.637 3.597 
KZ index -8.754 -6.364 -1.267 0.781 31.231 
WW index -0.209 -0.331 -0.243 -0.155 0.416 
SA index -3.189 -3.703 -3.166 -2.674 0.772 

C. TNIC industry       
Q-i 2.274 1.459 1.930 2.791 1.180 
Firm size 6.849 5.809 6.978 8.006 1.634 
Cash flow 0.015 -0.010 0.058 0.094 0.132 

D. 10NN cluster      
Q10NN 2.247 1.471 1.892 2.646 1.220 
Firm size 6.822 5.662 6.811 7.955 1.572 
Cash flow -0.004 -0.036 0.052 0.090 0.159 
Mean similarity score  0.170 0.122 0.157 0.202 0.072 
Mean R&D  0.072 0.001 0.023 0.119 0.099 
Analyst coverage 80.366 46.000 72.000 106.000 45.736 
Cluster size ($US billions) 39.461 3.927 11.576 34.278 103.428 
Mean stock illiquidity (106) 0.841 0.034 0.262 1.090 1.370 
Addition 0.139 0.000 0.000 0.000 0.346 

 
  



Table 4. Investment-to-Q sensitivity – the effect of product-market competition induced SPI 
 
The table reports the estimation results of investment-to-Q regressions (see Equations (6) and (7)). The 
dependent variable in Panels A, B, and C is capex, R&D, and total investment, respectively, with all 
variables scaled by lagged total assets. Total investment is defined as the sum of capex, R&D, cash 
acquisitions, minus proceeds from asset sales. Column 1 regresses the corresponding investment ratio on 
Tobin’s Q, controlling for firm size and cash flow whose coefficients are not reported for brevity. In column 
2, we augment the specification with SPIPMC and its interaction term with Q. The coefficient of the single 
term is also unreported for brevity. In columns 3 and 4, we additionally control for the average Tobin’s Q of 
the focal firm’s peers. Specifically, Q-i is the average Tobin’s Q of all other firms in the same TNIC industry, 
while Q10NN denotes the average Tobin’s Q of the focal firm’s 10NN rivals. In column 3 (column 4), the model 
also includes the mean values of firm size and cash flow for all firms in the TNIC industry (10NN cluster) as 
additional controls. Variable definitions are provided in Appendix A. All models include firm and year fixed 
effects, and standard errors used to compute t-statistics (within brackets) are clustered at the firm level. 
***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
 
Panel A. Dependent variable is capex, scaled by lagged total assets 

 (1) (2) (3) (4) 
Qi 0.0078*** 0.0073*** 0.0068*** 0.0070*** 
 [21.76] [18.08] [16.97] [17.28] 
Qi × SPIPMC  0.0004** 0.0004** 0.0004*** 
  [2.04] [1.98] [2.05] 
Q-i   0.0022***              
   [4.29]              
Q10NN    0.0015*** 
    [3.88] 
Controls Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Adjusted R² 0.587 0.588 0.588 0.588 
Observations 77,064 77,064 77,064 76,677 

 
Panel B. Dependent variable is R&D, scaled by lagged total assets 

 (1) (2) (3) (4) 
Qi 0.0102*** 0.0082*** 0.0087*** 0.0083*** 
 [14.72] [11.49] [11.79] [11.52] 
Qi × SPIPMC  0.0020*** 0.0020*** 0.0020*** 
  [4.31] [4.53] [4.30] 
Q-i   -0.0030***              
   [-3.72]              
Q10NN    -0.0005 
    [-0.74] 
Controls yes yes yes yes 
Firm FE yes yes yes yes 
Year FE yes yes yes yes 
Adjusted R² 0.789 0.790 0.790 0.790 
Observations 77,064 77,064 77,064 76,677 

 
  



Panel C. Dependent variable is total investment, scaled by lagged total assets 
 (1) (2) (3) (4) 
Qi 0.0228*** 0.0202*** 0.0201*** 0.0201*** 
 [19.57] [15.73] [15.29] [15.61] 
Qi × SPIPMC  0.0022*** 0.0023*** 0.0023*** 
  [4.07] [4.13] [4.06] 
Q-i   0.0001              
   [0.08]              
Q10NN    -0.0003 
    [-0.25] 
Controls yes yes Yes yes 
Firm FE yes yes Yes yes 
Year FE yes yes Yes yes 
Adjusted R² 0.403 0.404 0.405 0.404 
Observations 74,060 74,060 74,060 73,693 

 
  



Table 5. Robustness checks 

The table replicates column 3 of Table 4 with the following alterations. Column 1 uses the logarithmic 
transform of the percentage increase in R2 after augmenting the baseline model with the 10NN rivals’ stock 
returns, as an alternative measure of product-market driven stock price informativeness (SPIPMC). Column 
2 uses the Fama-French five-factor model instead of the one-factor model. Column 3 relies on asymmetric 
betas to account for differential effects of good and bad news about rivals on the focal firm’s stock return. 
Column 4 accounts for managerial private information using earnings surprise (ERC) as a proxy, measured 
as the average of the absolute 3-day abnormal stock returns over the prior year’s four quarterly earnings 
announcements. Column 5 controls for analyst coverage, with #Analyst representing the log of one plus 
the number of analysts following the focal firm in the previous year. Column 6 relies on a placebo test which 
consists in replacing the 10NN rivals with 10 randomly drawn (pseudo) rivals. Variable definitions are 
provided in Appendix A. The corresponding single terms (SPIPMC in all columns, ERC in column 4, and 
#Analyst in column 5), along with the controls and fixed effects from Table 4, are included in the model but 
not reported for brevity. Standard errors, used to compute t-statistics [in brackets], are clustered at the firm 
level. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A. Dependent variable is capex, scaled by lagged total assets 

 Log(%ΔR2) Five-factor 
model 

Asymmetric 
betas 

Managerial 
information 

Analyst 
coverage 

Placebo 
test 

 (1) (2) (3) (4) (5) (6) 
Qi 0.0072*** 0.0068*** 0.0066*** 0.0073*** 0.0077*** 0.0070*** 
 [19.74] [15.71] [15.45] [12.82] [8.79] [13.12] 
Qi × SPIPMC 0.0003*** 0.0008* 0.0004** 0.0004** 0.0003 0.0001 
 [2.70] [1.82] [2.36] [2.13] [1.40] [0.98] 
Qi × ERC    -0.006   
    [-1.20]   
Qi × #Analyst     -0.001  
     [-1.62]  
Q-i 0.0022*** 0.0022*** 0.0022*** 0.0023*** 0.0021*** 0.0023*** 
 [4.16] [4.28] [4.23] [4.50] [4.23] [4.39] 
Controls Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Adjusted R² 0.589 0.588 0.589 0.591 0.595 0.587 
Obs. 77,064 77,064 77,064 76,182 73,882 75,344 

 
Panel B. Dependent variable is R&D, scaled by lagged total assets 

 Log(%ΔR2) Five-factor 
model 

Asymmetric 
betas 

Managerial 
information 

Analyst 
coverage 

Placebo 
test 

 (1) (2) (3) (4) (5) (6) 
Qi 0.0109*** 0.0091*** 0.0080*** 0.0091*** 0.0126*** 0.0109*** 
 [14.90] [10.09] [10.10] [8.82] [8.05] [11.26] 
Qi × SPIPMC 0.0015*** 0.0031** 0.0019*** 0.0021*** 0.0012** 0.000 
 [4.97] [2.48] [4.82] [4.94] [2.22] [0.12] 
Qi × ERC    -0.0072   
    [-0.68]   
Qi × #Analyst     -0.0023***  
     [-4.11]  
Q-i -0.0031*** -0.0030*** -0.0030*** -0.0026*** -0.0023*** -0.0028*** 
 [-3.85] [-3.60] [-3.78] [-3.28] [-2.97] [-3.38] 
Controls yes yes yes yes yes Yes 
Firm FE yes yes yes yes yes Yes 
Year FE yes yes yes yes yes Yes 
Adjusted R² 0.791 0.790 0.790 0.7930 0.7910 0.789 
Obs. 77,064 77,064 77,064 76,182 73,882 75,344 

 
  



Panel C. Dependent variable is total investment, scaled by lagged total assets 
 Log(%ΔR2) Five-factor 

model 
Asymmetric 

betas 
Managerial 
information 

Analyst 
coverage 

Placebo 
test 

 (1) (2) (3) (4) (5) (6) 
Qi 0.0224*** 0.0201*** 0.0191*** 0.0216*** 0.0236*** 0.0227*** 
 [18.80] [13.55] [14.18] [12.12] [9.84] [14.22] 
Qi × SPIPMC 0.0017*** 0.0041** 0.0022*** 0.0024*** 0.0016** 0.0000 
 [4.27] [2.30] [4.57] [4.25] [2.13] [0.01] 
Qi × ERC    -0.0220   
    [-1.39]   
Qi × Analyst     -0.0027***  
     [-2.96]  
Q-i -0.0001 0.0001 0.0000 0.0008 0.0001 0.0002 
 [-0.06] [0.06] [0.02] [0.54] [0.08] [0.17] 
Controls yes yes yes yes yes Yes 
Firm FE yes yes yes yes yes Yes 
Year FE yes yes yes yes yes Yes 
Adjusted R² 0.405 0.405 0.405 0.3950 0.3950 0.404 
Obs. 74,060 74,060 74,060 71,003 71,003 72,401 

  



Table 6. Controlling for the residual component of SPI 
 
This table examines whether the product market competition-driven component of stock price 
informativeness influences investment-to-Q sensitivities, while accounting for the residual firm-specific 
component. The dependent variable in columns 1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total 
investment ratio, respectively. In column 1, SPITOT represents total stock price informativeness, calculated 
as in Equation (2). SPIRES quantifies residual stock price informativeness after augmenting the baseline 
model with the stock returns of the 10NN rivals, calculated as in Equation (4). SPIPMC measures the 
contribution of the 10NN rivals’ stock returns to the focal firm’s stock price informativeness, calculated as 
the difference between SPITOT and SPIRES. Variable definitions are in Appendix A. All models control for the 
single term of the considered information variable, along with firm size and cash flow, and include firm and 
year fixed effects (coefficients omitted for brevity). In columns 2, 4, and 6, the model also includes the mean 
values of firm size and cash flow for all firms in the TNIC industry (10NN cluster) as additional controls. 
Standard errors, used to compute t-statistics [in brackets], are clustered at the firm level. ***, **, and * 
denote significance at the 1%, 5%, and 10% levels, respectively. 
 

 Capex R&D Total investment 
 (1) (2) (3) (4) (5) (6) 
Qi 0.0065*** 0.0060*** 0.0069*** 0.0074*** 0.0183*** 0.0184*** 
 [14.61] [13.36] [8.71] [9.11] [13.46] [13.19] 
Qi × SPITOT 0.0004***  0.0015***  0.0017***  
 [3.17]  [5.10]  [4.44]  
Qi × SPIRES  0.0009***  0.0016***  0.0017** 
  [3.25]  [3.65]  [2.30] 
Qi × SPIPMC  0.0001  0.0015***  0.0018*** 
  [0.61]  [3.13]  [3.10] 
Q-i  0.0019***  -0.0034***  -0.0009 
  [3.64]  [-4.07]  [-0.60] 
Controls yes yes yes yes yes yes 
Firm FE yes yes yes yes yes yes 
Year FE yes yes yes yes yes yes 
Adjusted R² 0.5870 0.5890 0.7900 0.7900 0.4040 0.4040 
Observations 77,064 77,064 77,064 77,064 74,060 74,060 

 
  



Table 7. Cross-sectional determinants of managerial learning  
 
This table replicates column 3 of Table 4 across various subsamples. The dependent variable in columns 
1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total investment ratio, respectively. For brevity we only 
report the coefficient estimate of the interaction term of interest, Q × SPIPMC. Panel A compares firms with 
low versus high financial constraints. We use three measures of financial constraints: the KZ index, the WW 
index, and the SA index. Firms are classified as having low (high) financial constraints if they rank in the 
bottom (top) tercile of the sample for a given year. Panel B differentiates between 10NN rival firms operating 
in high- and low-quality information environments. The subsamples are constructed using a three-variable 
index capturing key aspects of the 10NN rivals’ informational environment: (i) cluster size, (ii) analyst 
coverage, and (iii) stock liquidity. For each variable, we assign tercile-based scores for observations in the 
first, second, and third terciles, respectively. These scores are then summed across the three variables to 
create an information environment index. Each year, focal firms are classified into high- or low-quality 
information environments based on whether their information environment index falls into the top or 
bottom tercile of the distribution, respectively. Panel C compares focal firms operating in high- and low-
competition environments, relying on two proxies, respectively the average similarity score of the focal firm 
with its 10NN rivals, and the focal firm’s product market fluidity score. High and low subsamples are 
respectively based on the terciles of the distribution. Panel D differentiates between firms operating in high- 
and low-R&D-intensive product market spaces, using terciles of the average R&D ratios of firms within the 
10NN cluster for each year. Panel E compares industry leaders and followers using two measures. The first 
classifies focal firms with both sales and ROA above (below) the median values for their SIC3 industry as 
industry leaders (followers). The second identifies leaders (followers) as firms in the top (bottom) tercile of 
market share within their 10NN cluster for each year. In each panel-specification, the last row reports z-
statistics for a test of the difference in the coefficients of Q × SPIPMC between the corresponding two sub-
samples. Standard errors, used to compute t-statistics [in brackets], are clustered at the firm level. ***, **, 
and * denote significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A. Financial constraints 

 Capex R&D Total investment 
 Low High Low High Low High 
 (1) (2) (3) (4) (5) (6) 
KZ index       

Qi × SPIPMC 0.0004** -0.0002 0.0029*** -0.0002 0.0003 0.0007 
 [2.21] [-0.44] [6.75] [-0.25] [0.25] [0.43] 

z-stat  1.23 3.41 -0.20 
WW index       

Qi × SPIPMC 0.0002 0.0003 0.0040*** 0.0005 0.0015 0.0004 
 [0.56] [1.18] [10.86] [0.85] [1.41] [0.26] 

z-stat -0.23 5.04 0.59 
SA index       

Qi × SPIPMC 0.0004 0.0001 0.0042*** 0.0001 0.0012 0.0002 
 [1.06] [0.60] [14.24] [0.17] [1.44] [0.16] 

z-stat 0.73 6.23 0.67 
 
Panel B. Information environment quality 

 Capex R&D Total investment 
 High Low High Low High Low 
 (1) (2) (3) (4) (5) (6) 

Qi × SPIPMC 0.0015** -0.0001 0.0044*** 0.0007 0.0008 -0.0009 
 [2.41] [-0.48] [2.95] [0.94] [0.39] [-0.56] 

z-stat 2.44 2.22 0.65 
 
  



Panel C. Product market competition 
 Capex R&D Total investment 
 High Low High Low High Low 
 (1) (2) (3) (4) (5) (6) 
Average similarity score 

Qi × SPIPMC 0.0002 0.0004 0.0027*** 0.0013** 0.0016 0.0004 
 [0.71] [1.17] [5.07] [2.06] [1.35] [0.33] 

z-stat -0.45 1.70 0.71 
Product market fluidity 

Qi × SPIPMC 0.0001 0.0012** 0.0022*** 0.0004 0.0012 0.0008 
 [0.56] [2.31] [4.09] [0.87] [1.10] [0.64] 

z-stat      -2.00 2.54         0.24  
 
Panel D. R&D-intensive cluster 

 Capex R&D Total investment 
 High Low High Low High Low 
 (1) (2) (3) (4) (5) (6) 

Qi × SPIPMC 0.0005*** -0.0003 0.0021*** 0.0000 0.0012 -0.0015 
 [2.58] [-0.29] [3.70] [-0.57] [1.20] [-0.68] 

z-stat 0.76 3.70 1.12 
 
Panel E. Focal firms’ leadership status 

 Capex R&D Total investment 
 Yes No Yes No Yes No 
 (1) (2) (3) (4) (5) (6) 
Industry leaders by profitability and sales 

Qi × SPIPMC 0.0005 0.0003 0.0035*** 0.0013** 0.001 -0.0002 
 [1.44] [1.06] [5.62] [2.17] [1.14] [-0.14] 
z-stat 0.45 2.55 0.72 
Industry leaders by market share 

Qi × SPIPMC 0.0004 0.0005* 0.0038*** 0.0013** 0.0005 0.0011 
 [1.16] [1.66] [8.77] [2.12] [0.39] [0.82] 

z-stat -0.22 3.33 -0.32 

 
  



Table 8. Endogeneity test 
 
Panel A shows the effect of S&P 500 additions on stock price informativeness. The dependent variable is 
SPITOT in column 1, SPIPMC in column 2, and SPIRES in column 3.  Addition equals one if at least one of the ten 
nearest rivals of the focal firm is added to the S&P 500 index over the previous three years and zero 
otherwise. Panel B shows the effect of S&P 500 additions to the investment-to-Q sensitivity by replicating 
columns 2 and 3 of Table 4, respectively in columns 1, 3, and 5, and columns 2, 4, and 6. The dependent 
variable in columns 1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total investment ratio, respectively. 
Variable definitions are in Appendix A. All models include the controls from the baseline models, along with 
firm and year fixed effects. Standard errors used to compute t-statistics (within brackets) are clustered at 
the firm level. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
 
Panel A. The effect of S&P 500 additions on stock price informativeness 

 SPITOT SPIPMC SPIRES 
 (1) (2) (3) 
Addition -0.0359** -0.0220** -0.0138 
 [-2.54] [-2.38] [-1.63] 
Qi -0.1310*** -0.0598*** -0.0711*** 
 [-26.95] [-18.91] [-28.63] 
Firm size -0.3217*** -0.1398*** -0.1820*** 
 [-23.63] [-16.77] [-23.21] 
Cash flow -0.3266*** -0.2031*** -0.1235*** 
 [-7.38] [-6.39] [-5.54] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Adjusted R² 0.638 0.427 0.638 
Observations 76,545 76,545 76,545 

 

Panel B. The effect of S&P 500 additions on investment-to-Q sensitivity 
 Capex R&D Total investment 
 (1) (2) (3) (4) (5) (6) 
Qi 0.0078*** 0.0073*** 0.0107*** 0.0112*** 0.0230*** 0.0229*** 
 [20.80] [19.23] [14.74] [14.36] [18.92] [18.02] 
Qi × Addition 0.0004 0.0004 -0.0040*** -0.0040*** -0.0017 -0.0016 
 [0.71] [0.72] [-4.83] [-4.78] [-1.03] [-0.99] 
Addition -0.0009 -0.0010 0.0074*** 0.0073*** 0.0023 0.0018 
 [-0.73] [-0.84] [4.55] [4.44] [0.67] [0.52] 
Q-i  0.0024***  -0.0040***  0.0006 
  [4.56]  [-4.78]  [0.38] 
Controls Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Adjusted R² 0.587 0.588 0.789 0.790 0.403 0.404 
Observations 76,545 76,545 76,545 76,545 73,566 73,566 

  



Table 9. The effect of product-market competition induced SPI on innovation outcomes 
 
The table replicates columns 2 and 3 of Table 4 using three different dependent variables capturing 
innovation outcomes over the next three years:  patent count in columns 1-2, patent citation in columns 3-
4, and self-fluidity in columns 5-6. Variable definitions are provided in Appendix A. All models include 
controls from the baseline models, along with firm and year fixed effects. Standard errors used to compute 
t-statistics (within brackets) are clustered at the firm level. ***, **, and * indicate significance at 1%, 5%, 
and 10%, respectively. 
 

 Patent count Patent citation Self-fluidity 
 (1) (2) (3) (4) (5) (6) 
Qi -0.0015 -0.0019* -0.0025 -0.0023* -0.0002 -0.0061** 
 [-1.46] [-1.68] [-1.47] [-1.68] [-0.06] [-2.09] 
Qi × SPIPMC 0.0007** 0.0007** 0.0011* 0.0011* 0.0031** 0.0025* 
 [2.13] [2.11] [1.83] [1.77] [2.08] [1.86] 
Q-i  0.0019*  -0.0012  0.0341*** 
  [1.88]  [-0.40]  [6.25] 
Controls Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Adjusted R² 0.814 0.814 0.473 0.473 0.531 0.532 
Observations 77,064 77,064 77,064 77,064 76,658 76,658 
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